Die Gebirge unseres Planeten - eine Urlandschaft aus Felsen, Schnee und Eis. Heimat von Tieren und Pflanzen, die sich den extremen Lebensbedingungen angepasst haben, und Sehnsuchtsorte.
Für viele Menschen ist das Gebirge sogar ein Sitz der Götter. Die steilen Sandsteinfelsen von Meteora in Griechenland sind beispielsweise seit einem Jahrtausend Rückzugsort von Einsiedlern und Mönchen, auch viele Gipfel des Himalajas werden als heilig verehrt.
In den australischen Snowy Mountains banden sich bereits im Jahr 1860 europäische Goldsucher Bretter unter die Füße und erfanden so das Skifahren, und in den neuseeländischen Südalpen entdeckte der Erstbesteiger des Mount Everest, Edmund Hillary, seine Begeisterung für die Berge.
Menschenfeindliche Wüsten, imposante Gebirgslandschaften, brodelnde Vulkane, Leben spendende Flüsse: "Faszinierende Erde" stellt Landschaften der Superlative vor.
Für viele Menschen ist das Gebirge sogar ein Sitz der Götter. Die steilen Sandsteinfelsen von Meteora in Griechenland sind beispielsweise seit einem Jahrtausend Rückzugsort von Einsiedlern und Mönchen, auch viele Gipfel des Himalajas werden als heilig verehrt.
In den australischen Snowy Mountains banden sich bereits im Jahr 1860 europäische Goldsucher Bretter unter die Füße und erfanden so das Skifahren, und in den neuseeländischen Südalpen entdeckte der Erstbesteiger des Mount Everest, Edmund Hillary, seine Begeisterung für die Berge.
Menschenfeindliche Wüsten, imposante Gebirgslandschaften, brodelnde Vulkane, Leben spendende Flüsse: "Faszinierende Erde" stellt Landschaften der Superlative vor.
Nutzer haben auch angesehen
-
Expeditionen ins Ti...
Landschaftsbild | 45 Min. Ausgestrahlt von NDR
am 02.04.2025, 20:15 -
Floridas Südwestküste
Landschaftsbild | 45 Min. Ausgestrahlt von ARD alpha
am 03.04.2025, 20:15 -
Spaniens grüner Norden
Landschaftsbild | 45 Min. Ausgestrahlt von ARD alpha
am 04.04.2025, 20:15 -
Pakistans Natur, ei...
Landschaftsbild | 45 Min. Ausgestrahlt von arte
am 01.04.2025, 18:35 -
Brahmaputra - Der g...
Landschaftsbild | 45 Min. Ausgestrahlt von 3sat
am 01.04.2025, 16:10
Wie gefällt dir diese Sendung?
- Jana O., 18. Feb, 14:58 Uhr (Episode 4)
Vorhersage von Vulkanausbrüchen Siehe auch: Vulkanobservatorium Entstehung von Vulkanen an Plattengrenzen Ausbruch eines Vulkans Eruption am Stromboli Ob ein Vulkan endgültig erloschen ist oder vielleicht wieder aktiv werden kann, interessiert besonders die Menschen, die in der Umgebung eines Vulkans leben. In jedem Fall hat ein Vulkanausbruch weitreichende Konsequenzen, denn über das persönliche Schicksal hinaus werden Infrastruktur und Wirtschaft der betroffenen Region nachhaltig beeinflusst. Daher ist es das vorrangige Forschungsziel, Vulkanausbrüche möglichst präzise vorhersagen zu können. Fehlprognosen wären allein unter Kostengesichtspunkten verheerend (Evakuierung Tausender von Menschen, Stilllegung des gesamten Wirtschaftslebens u. v. m.). Trotz gewisser Gemeinsamkeiten gleicht kein Vulkan in seinem Ausbruchsverhalten dem anderen. Demnach sind Beobachtungen über Ruhephasen oder seismische Aktivitäten eines Vulkans kaum auf einen anderen übertragbar. Bei der Überwachung von Vulkanen stehen generell fünf Überwachungsmethoden zur Verfügung, die je nach Vulkan-Charakteristik in unterschiedlicher Kombination eingesetzt werden: die Aufzeichnung seismischer Aktivität, die geodätische Überwachung der Topographie, die Messung gravimetrischer und magnetometrischer Veränderungen, die Erfassung von oberflächennahen Temperaturerhöhungen und die chemische Analyse aufsteigender vulkanischer Gase. Aufzeichnung seismischer Aktivität, vulkanischer Tremor Ein Eruptionsprozess wird zunächst vom Aufstieg des Magmas eingeleitet. Wenn das Magma auf vorgezeichneten oder neuen Bruchlinien, Spalten oder Rissen zur Erdoberfläche emporsteigt, entstehen durch Spannungen im Umgebungsgestein und durch Entgasungsprozesse des Magmas charakteristische seismische Signale. Gestein zerbricht dabei und Risse beginnen zu vibrieren. Die Zerstörung von Gestein löst Erdbeben mit hoher Frequenz aus, die Bewegung der Risse dagegen führt zu niedrig frequenten Beben, dem sogenannten vulkanischen Tremor. Um Tiefe und Herd der vulkanischen Beben zu ermitteln, wird in der Regel ein Netz von äußerst empfindlichen Seismometern rund um den Vulkan eingerichtet. Denn gerade die schwachen Erdbeben mit einer Stärke von weniger als 1 sind häufig Anzeichen für das Erwachen eines Vulkans. Zum Beispiel wurden am betroffenen Südwesthang des Ätna in den 12 Stunden vor dem 1981er Ausbruch etwa 2800 kleinere Erdstöße durch die vor Ort installierten Seismometer als Tremor registriert. Über ein automatisches Übertragungssystem wurden die Daten direkt zum Istituto Internazionale di Vulcanologia in Catania weitergeleitet. Mit Hilfe moderner Technik werden Veränderungen der seismischen Aktivität heute in Echtzeit ermittelt. Strukturen und Vorgänge unter der Erdoberfläche können damit unmittelbar und exakt dargestellt und analysiert werden. Geodätische Überwachung Dringt Magma aus der Tiefe nach oben, so können in bestimmten Bereichen des Vulkans Deformationen der Erdoberfläche in Form von Aufbeulungen, Absenkungen, Neigungen, Buckeln und Rissen entstehen. Diese Deformationen können mit meist in Bohrlöchern des Gesteins fest installierten Neigungsmessern (Klinometern) und Dehnungsmessern (Extensometern) vor Ort gemessen werden. Diese Phänomene können aber auch schon mit einfachen Mitteln wie zum Beispiel mit einem Bandmaß oder durch aufgesprühte Linien erkannt werden. Anfang August 1982 hatten Geologen im Kraterboden des Mount St. Helens viele schmale Bodenrisse entdeckt und sie mit Farblinien markiert. Zwei Tage später bereits waren die Linien deutlich gekrümmt, was eine Veränderung der Risse durch aufsteigendes Magma anzeigte. Wenige Tage später kam es zu einer heftigen Eruption des Vulkans. Im Oktober 2004 wurde am Mount St. Helens eine Aufbeulung einer Vulkanflanke von mehr als 100 m beobachtet, die auch mit bloßem Auge sichtbar war. Eine komplexere und exaktere Methode zur Erfassung morphologischer Veränderungen ist zum Beispiel die Messung horizontaler Entfernungen mit Elektronischer Distanzmessung (EDM). Ein EDM kann elektromagnetische Signale senden und empfangen. Die Wellenphase verschiebt sich dabei in Abhängigkeit von der Entfernung zwischen EDM und reflektierendem Objekt und gibt damit das Ausmaß der entstandenen Verschiebung an. EDMs haben Reichweiten bis zu 50 km und hohe Messgenauigkeiten von wenigen Millimetern. Oberflächenveränderungen vor allem größerer Gebiete und abgelegener Vulkane werden mit Hilfe von satellitengestützten geodätischen Messverfahren beobachtet. Da sich infolge von Deformationen des Geländes auch Grundwasser- und Oberflächenwasserstände relativ zueinander verändern können, werden oft Grundwassermessstellen eingerichtet und in gewässernahen Gebieten Fluss- und Seewasserpegel installiert. Man setzt inzwischen auch Satellitenbilder zur Überwachung von Vulkanen und deren Verformung bzw. Aufwölbung ein. Messung gravimetrischer und magnetometrischer Veränderungen Dringen heiße Gesteinsschmelzen in oberflächennahe Erdschichten, so werden lokale Veränderungen im Schwerefeld beobachtet. Diese örtlichen Veränderungen werden durch Dichteunterschiede zwischen Magma und Umgebungsgestein verursacht. Solche sogenannten mikrogravimetrischen Anomalien lassen sich mit Hilfe von hoch empfindlichen Gravimetern entdecken, die an aktiven Vulkanen zum Einsatz kommen. Beim Magma-Aufstieg können auch lokale Änderungen des Magnetfeldes registriert werden, die durch thermische Einwirkungen verursacht werden. Bereits 1981 wurden am Südhang des Ätna und in etwa 20 km Entfernung zum Ätna zwei magnetometrische Stationen mit automatischer Daten-Fernübertragung in Betrieb genommen. Erfassung von Temperaturerhöhungen Der Aufstieg des etwa 1100 bis 1400 °C heißen Magmas aus einer Magmakammer oder direkt aus dem oberen Erdmantel geht in erster Linie mit einer lokalen Temperaturerhöhung des Nebengesteins einher. Mit Hilfe ortsfester Stationen zur Temperaturmessung und durch Infrarot-Aufnahmen von Satelliten aus können solche thermischen Aufheizungen festgestellt werden, die durch oberflächennahe Stauung aufgedrungener Schmelzen entstehen. Analyse aufsteigender Gase Eruptive Gase sind die Haupttriebkraft der vulkanischen Aktivität. Änderungen ihrer Menge, ihrer Temperatur und ihrer chemischen Zusammensetzung sind für die Vorhersage eines Vulkanausbruchs von grundlegender Bedeutung. Generell sind die Schwankungen im Chemismus der Gase umso höher, je heißer die Gase sind und je reger die vulkanische Aktivität ist. Bei hohem Gasausstoß lässt sich die Konzentration gewisser Gase mit Hilfe ihres Absorptionsspektrums im sichtbaren Licht auch durch Fernerkundung bestimmen. Typische vulkanische Gase sind hauptsächlich Wasserdampf, Kohlendioxid, Schwefeldioxid, Schwefelwasserstoff, Chlorwasserstoff (Salzsäure ist die Lösung in Wasser) und Fluorwasserstoff. Die geochemische Überwachung erstreckt sich auch auf die Beobachtung von Grundwasser und von Quellen. Denn unterirdisches Wasser wird oft von vulkanischen Gasen kontaminiert, die dem Magma entweichen und sich im Boden ausbreiten. Eine besondere Rolle spielen dabei Helium und Radon. Beide Gase entstammen dem Erdmantel. Steigt eine Magmakammer auf, so erhöhen sich auch die Gehalte dieser Gase. So hat man zum Beispiel nach der Erdbebenkrise auf der griechischen Insel Nisyros (1996) begonnen, die Gase und andere Faktoren genau zu überwachen, da man befürchtete, es könne ein Vulkanausbruch bevorstehen. Im Rahmen des EU-Programms Geowarn haben sich europäische Universitäten zusammengeschlossen und beobachten Nisyros, den Vesuv und andere potentiell gefährliche Vulkane in Europa. Vulkan Arenal, Costa Rica Vulkan Kilimanjaro, Tansania/Kenia Vulkan Teide, Teneriffa (Spanien). Im Rahmen der internationalen Dekade zur „Schadensminimierung bei Naturkatastrophen 1990–2000“ wurden 15 Vulkane weltweit als Forschungsobjekte ausgewählt und kontinuierlich überwacht, darunter auch der Vesuv und der Ätna. Fazit Trotz der Vielzahl der Frühwarnsysteme und vieler neuer Erkenntnisse auf diesem Gebiet wird sich bei Vulkanausbrüchen eine gewisse Unberechenbarkeit nie ganz ausschalten lassen. Parallel zur Vorhersage gefährlicher Eruptionen sind Schutzmaßnahmen, Risiko- und Handlungspläne, Aufklärung der betroffenen Bevölkerung und gesetzliche Regelungen für den Ernstfall notwendig. Zusätzlich könnte es sich lohnen, auch die Natur einer gefährdeten Region genau zu beobachten. Oft reagieren Tiere sensibler und verlassen ein gefährdetes Gebiet weit vor einem Vulkanausbruch. Größter Vulkan der Erde Nature Geoscience veröffentlichte in seiner Septemberausgabe 2013 (Vol 6 No 9) einen Artikel, in dem Forscher das unterseeische Tamu-Massiv östlich von Japan für den größten Vulkan der Erde halten.[6] Die von Forschern um William Sager (University of Houston) (Texas/USA)[7] analysierten Gesteinsproben des Massivs stammen aus maximal 175 Metern Tiefe; das Massiv erhebt sich mehrere Kilometer über den Meeresboden. Der schildförmige unterseeische Berg könnte entstanden sein, als an einer Stelle riesige Lavamengen austraten und beim Abkühlen flache, weit reichende Hänge schufen. Es handle sich wahrscheinlich um einen Einzelvulkan von 650 Kilometern Länge und 450 Kilometern Breite. Vulkane in der Mythologie Für fast alle Kulturen sind Vulkane der Sitz ihrer Götter. In der griechischen Mythologie ist die vulkanische Insel Limnos der Sitz des Feuergottes Hephaistos, der Name 'Vulkan' leitet sich vom römischen Gott Vulcanus ab. Auch in der aztekischen, isländischen und vielen weiteren Kulturen spielen Vulkane eine zentrale Rolle in der Mythologie.[8] In Hawaii wird der Vulkangöttin Pele[9] besondere Verehrung zuteil. In der Bibel erinnern mehrere Stellen an einen Vulkanausbruch, unter anderem Ex 19,18 EU und Ex 20,18 EU. Mehrere Forscher sehen unter anderem auch aufgrund dieser Beschreibungen in Jahwe Reste eines Vulkan-Gottes. Die heilige Agatha von Catania gilt als Helferin gegen Ausbrüche des Ätna. Redewendung Die aus dem Französischen stammende Wendung Tanz auf dem Vulkan beschreibt das Leben in einer explosiven Situation ungeachtet aller Risiken.